

MANUFACTURERS OF A DIVERSE RANGE OF ADVANCED WELDING CONSUMABLES

WI-0304 DS119 HV-900, Rev. 2, Date 01.01.2011

HV-900	LIME RUTILE HARDFACING ELECTRODE DEPOSITING WELD METAL HIGH IN CHROME CARBIDE PROVIDING EXCELLENT RESISTANCE TO ABRASION						DATA SHEET NO. 119	
SPECIFICATION							•	
CLASSIFICATION					-			
PRODUCT DESCRIPTION	The design emphasis of the flux is designed to ensure a slag solidification range that allows the chrome carbide particles to be evenly distributed within the austenitic alloy matric, so ensuring complete uniformity of hardness. The balanced lime rutile flux contains the appropriate alloying elements and is bound with a blend of silicates that ensures both coating strength and resistance to moisture absorption.							
WELDING FEATURES OF THE	The electrode welds with a smooth stable arc and easily strikes and re-strikes. Weld appearance is bright, almost of polished appearance, smoothly contoure and slag detachability is excellent. The metal recovery is some 170% with respect to core wire weights, thu							
ELECTRODE	reducing welding time. The weld deposits are non-machinable.							
APPLICATIONS AND MATERIALS TO BE WELDED	Suitable for surfacing a wide range of steels including 13Mn types. Because thermal contractional stresses will cause stress relieving cross-cracking, build-ups should be limited to 3 layers, preferably two when restraint is high.							
	The deposit has excellent resistance to abrasion against minerals, sand and sludges which leads to its extensive use in the earth moving, cement, dredging and steel industries.							
	For build-ups on carbon and low alloy steels or 13Mn steel, NSB-307 should be used as a buffer layer.							
WELD METAL ANALYSIS COMPOSITION % BY Wt.		С	Mn	Si	Cr	Мо	Fe	
	MIN	4.0	-	-	35	-		
	MAX	5.0	1.5	1.0	45	1.0		
		4.5	0.7	0.5	42	i · · · · · · · · · · · · · · · · · · ·	Bal.	
WELD METAL HARDNESS (ALL WELD METAL)	AS WELDED 150°C PRE-HEAT		HRC	HV		Due to the complex nature of chrome carbides micro hardness will be 1500 HV. These give better abrasion resistance than martensitic alloys, eg : HV-600B, which have equivalent overall hardness, but lower micro- hardness.		
	1 st Layer		48 – 52	460 – 550				
	2 nd Layer		54 – 58	580 – 660				
	3 rd Layer		56 – 60	620 – 700				
	Actual hardness will be affected on base material composition, number of layers, heat input and welding conditions							
WELDING AMPERAGE AC or DC+	Ø (mm)		3.2	4.0		5.0		
	MIN		110	150		190		
	MAX		160 2		220 270			
OTHER DATA	Electrodes that have become damp should be re-dried at 150°C for 1 hour.							
RELATED PRODUCTS	Please contact our Technical Department for detail.							